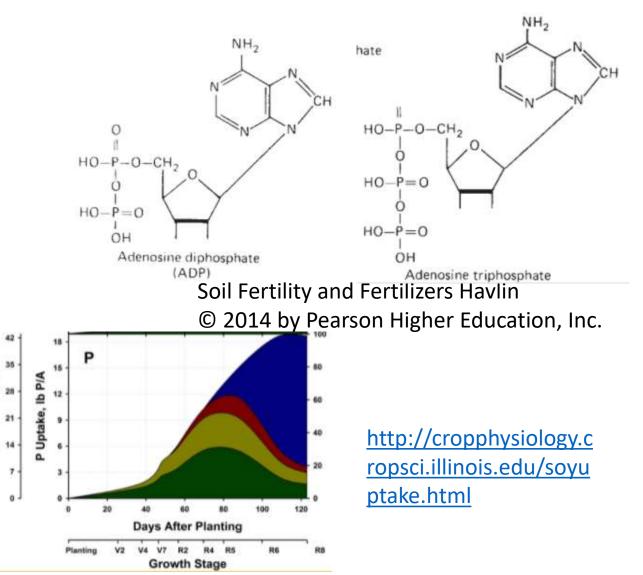
AGR1403 – Lecture 7 Phosphorus

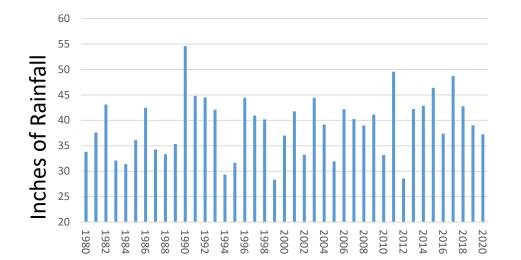
Learning Objectives

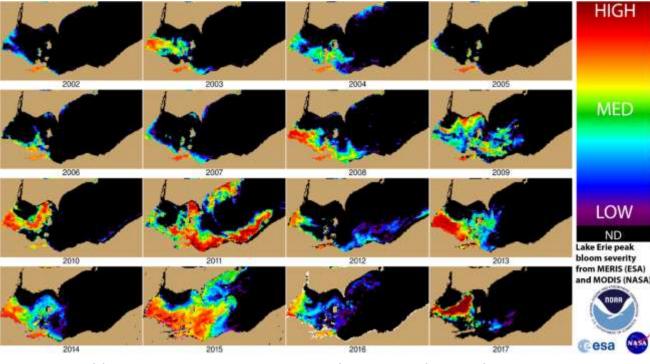

- By the end of the lesson you should be able to:
 - Discuss Phosphorus dependent plant functions
 - Identify deficiency symptoms of Phosphorus in plants
 - Explain the P cycle and plant available forms of phosphorus
 - Discuss Phosphorus sources and the P paradox
- Readings: Havlin pp 185 192; 200 217

Phosphorus Plant Functions

- Phosphorus in plants ranges 0.1 to 0.5%
- Major energy transfer and storage
 - ADP \longrightarrow ATP \longrightarrow ADP
- P is essential in DNA and RNA
- Cell membrane function and integrity
- Plant demands continuous during plant growth

P Uptake, Ib P₂O₅/A


• Mobile in plants



Phosphorus Losses

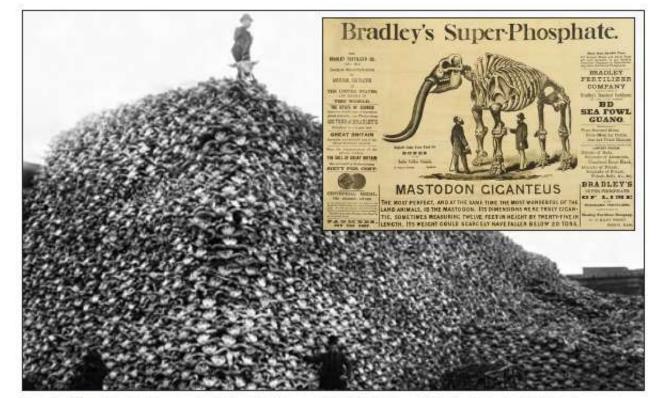
- P strongly adsorbed to the soil
 - P Buildup like a bank
 - Most P lost by erosion
 - Some lost as dissolved reactive P
- Best Management Practices
 - Erosion, conservation tillage etc
 - Right rate, product, rate, time 4R
- More closely watched, why is algae only growing in the last decades?

https://crops.extension.iastate.edu/encyclopedia/whymanage-phosphorus

https://content.presspage.com/uploads/2170/1920_output-4x4-2002-2017-logos-revised-818546.png?10000

Nutrient Buildup in Lakes

- Contributes to Harmful Algal Blooms – HAB
 - Algae grow out of control and produce toxins
- Nutrient runoff is related to HAB growth
- HAB have occurred for decades and are natural
 - But appear to be occurring more frequently



https://www.noaa.gov/what-is-harmful-algal-bloom

Initial Phosphorus Sources

- Bones were crushed and applied at rates of 1t/A or more
- Leibig noted that bones and P fertilizer was a valuable asset
- Manure and Peruvian Guano was a common source of P
- John Lawes pretreated bones with H2SO4 superphosphate

2 Ca₅F(PO₄)₃ phosphate rock + 7 H_2SO_4 → 3 Ca(H₂PO₄)₂ [superphosphate] + 7 CaSO₄ + 2 HF

Large pile of bison skulls that will be ground into fertilizer in the U.S. around 1870 (left). Advertisement for Bradley Fertilizer Co. in 1881 (inset).

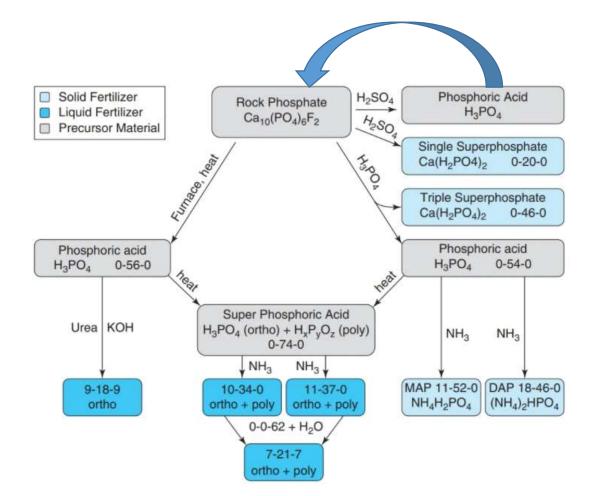
http://www.ipni.net/publication/bettercrops.nsf

Modern Phosphorus Production

- Phosphate rock was identified around the world
- England, 1847; Norway, 1851; France, 1856; USA, 1867; Tunisia, 1897, Morocco, 1921; Russia, 1930
- 72% Morocco, China, US, and Russia – 18% US

Phosphorus Paradox

- Phosphorus resources not widely distributed
 - FL, NC & Morocco current sources
 - China & Russia uranium
- Mining is not eco-friendly



https://www.agweb.com/news/crops/cropproduction/phosphorus-time-bomb-agriculture-myth-and-reality

Phosphorus Production

- Rock phosphate is not water soluble
- Treated with Sulfuric Acid or Heated
- Ortho phosphate Single phosphorus (H2PO4) molecule
- Poly phosphate salt of multiple phosphorus (H3PO4) molecules

$$\%P = \%P_2O_5 \times 0.43$$

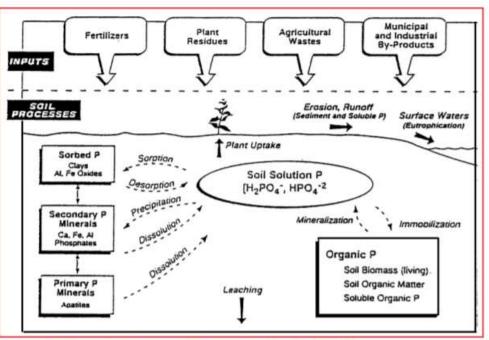
 $\%P_2O_5 = \%P \times 2.29$

Phosphorus Deficiency

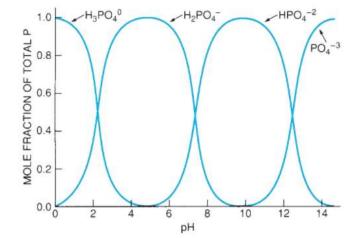
- Inhibits shoot growth increase root to shoot ratio
 - Leaves become dark, dull blue-green to pale
 - Turning red to violet from sugar accumulation in leaves
 - Symptoms first appear on older leaves
 - New leaves look healthy but small
- Cool soils and compromised roots
 - Side wall compaction can compromise P uptake

https://plantscience.psu.edu/research/labs/roots/methods/meth ods-info/nutritional-disorders-displayed/phosphorus-deficiency

https://www.cropnutrition.com/nutrient-management/phosphorus

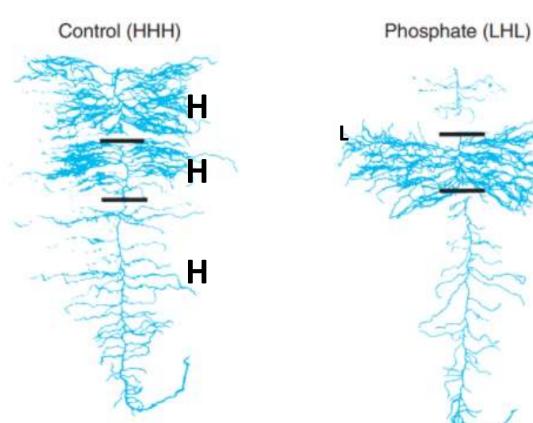


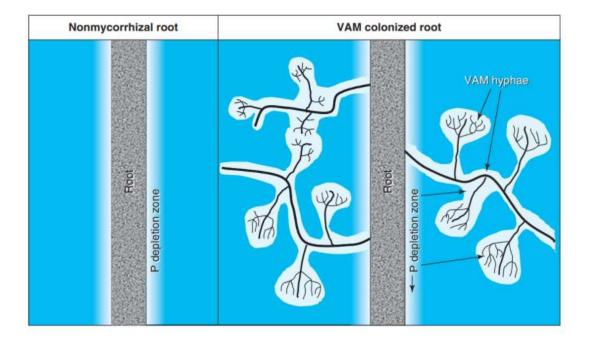
https://blog-crop-news.extension.umn.edu/2017/05/4key-nutrient-deficiencies-to-scout.html


Phosphorus in the Soil

- Soil Phosphorus is relatively stable
 - Not very mobile in the soil
- P availability influenced by:
 - Soil pH, Organic Matter, and P placement
- pH 4 to 7 H2PO4 main form in soil
 - Plant available form if present in soil solution
 https://www.prcs.usda.gov/l

https://www.nrcs.usda.gov/Internet/FSE_DOCU MENTS/nrcs142p2_053254.pdf




Nutrients and Root Growth

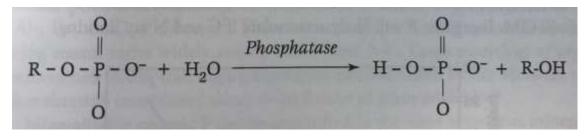
- Stratified nutrient zones demonstrate root growth in regions of High and Low concentrations of Phosphorus
- Think about stratified soil texture differences
 - Water and nutrient flow between A and B horizons

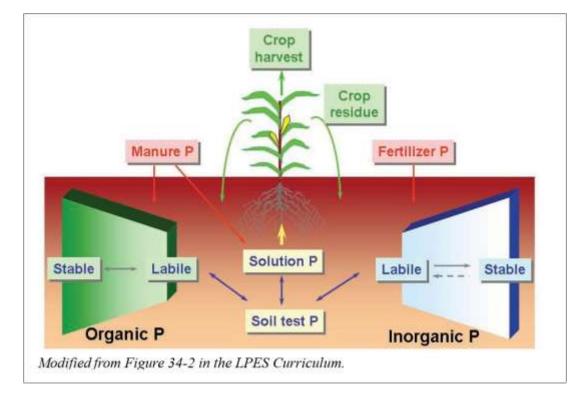
Non Mobile Soil Nutrients

- Nutrients near plant roots become depleted by plant uptake – Nutrient Depletion Zone
- Vesicular-arbuscular mycorrhiza VAM are Mycorrhizal Fungi extend root area and nutrient uptake
- Excessive N or P fertility can decrease Mycorrhizal Fungi

Soil Phosphorus and Productivity

- Crop and productivity can influence Phosphorus demand
- Corn to move from 75% to 95% needs 3x ppm of P
- Soybean to move from 75% to 95% needs 8x ppm of P

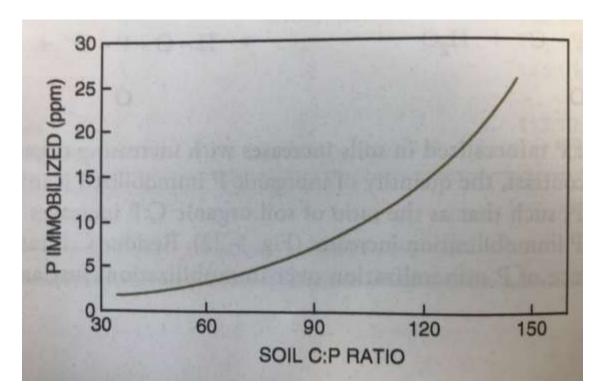

TABLE 5-2


ESTIMATED SOIL SOLUTION P CONCENTRATION ASSOCIATED WITH 75 AND 95% OF MAXIMUM YIELD OF SELECTED CROPS

	Approximate Soil Solution P for Two Yield Levels				
Crop	75% Maximum Yield	95% Maximum Yield			
	pp	om ———			
Cassava	0.003	0.005			
Peanuts	0.003	0.010			
Corn	0.008	0.025			
Wheat	0.009	0.028			
Cabbage	0.012	0.040			
Potatoes	0.020	0.180			
Soybeans	0.025	0.200			
Tomatoes	0.050	0.200			
Head lettuce	0.100	0.300			

P Mineralization & Immobilization

- Both occur simultaneously in soils
- Plant and organic residues degraded making P available
- Soil texture, biology, P level etc. influence availability
- Phosphatase enzyme responsible for conversion



https://water.unl.edu/phosphorus-dynamics

Soil Carbon Content and P fixation

- Similar to N, Increasing soil carbon immobilizes more P
- Source and residue influences mineralization vs immobilization
- Soil moisture, pH, temperature, tillage all influence P cycle
- Increasing soil C, soil health, microbial activity all can change soil P availability

Change in Soil P Over Time

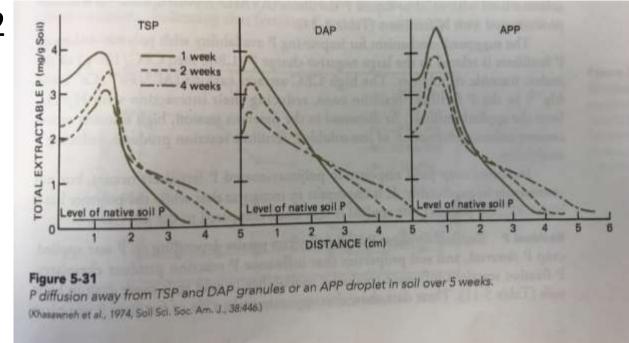
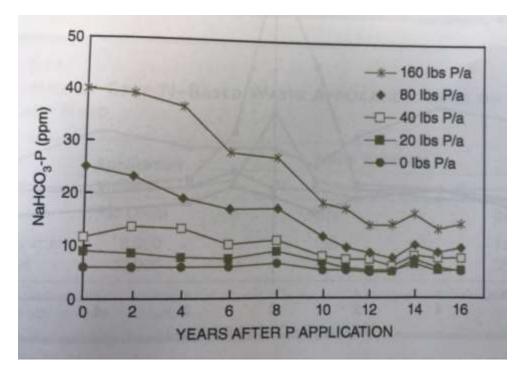

- Blaine Soil moderately deep, well drained soils that formed igneous rock, conglomerate, hard shale or sandstone
- Sutherland Soil shallow hard pan well drained soils that formed in fan alluvium from mixed sources
- Bradwell Soil Dark calcareous gravelly loam

TABLE 5-7 ORGANIC P LOSS WITH CULTIVATION IN THREE CANADIAN PRAIRIE SOILS

Soil Association	Native Prairie	60–70 Years of Cultivation	C or P Loss
	mg	g/g	- %
	Blain	e Lake	
Organic C	48	33	32
Total P	0.82	0.72	12
Organic P	0.65	0.53	18
Inorganic P	0.18	0.20	
	Suth	erland	
Organic C	38	24	37
Total P	0.766	0.66	12
Organic P	0.50	0.41	17
Inorganic P	0.26	0.25	
	Bra	dwell	
Organic C	32	17	46
Total P	0.75	0.53	29
Organic P	0.45	0.32	29
Inorganic P	0.30	0.21	29


P Dissolution over Time

- Estimate native soil P about 0.2 mg/g = 200 ppm
 - Ohio clay soil estimate 5-7 ppm
- Soil P diffusion mostly stays within 0.5" of granule

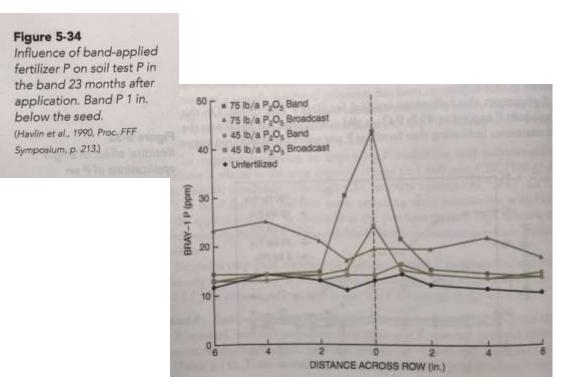
P Removal Over Time

- Single high P applications
- With higher P application P availability increases
- Higher application rates drop dramatically – continued higher rates of application needed to keep high levels

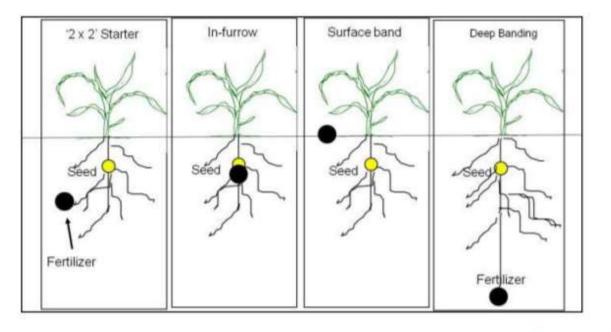

Organic P Source

- Mixed analysis if you want the N you get the other items along for the ride
- Manure is a good nitrogen source, but have to watch P level in the soil

Sample ID: BUILD Manure Type: SWIN	DING 1 2/3 FULL-AD IE, LIQUID PIT (16)	JATCO	MAN	URE ANA	LYSIS	Date I	Sampled: 1 Received: 1 Reported: 1	00000-00000	Page: 1 of
Analysis		Un	lt.	Analysis Res (As Received)	wit	Pounds Per 1,000 Gal			Availability ⁶ or 1,000 Gal
Moisture		9	;	99.14		8258			
Solids		%		0.86		72			
Nitrogen, Total Kje	eldahl (TKN)	%	,	0.217		18.1		14	.0*
Phosphorus (P)		%		0.018		3.5 (as	P2O5)	3	.5" (as P20)
Phosphorus [P]							11	100	0 * 1 V (1)
Potassium (K) TABLE 5-14 INFLUENCE C	OF CROP N-B	ASED WA	STE APPLIC	0.128 ATION RATE	S ON P A	12.8 (at		1.	a (as K ₂ O
Potassium (K) TABLE 5-14	DF CROP N-B	tohas 1 10 m	STE APPLIC	ATION RATE	S ON P A	PPLIED IN E	CESS		r dela
Potassium (K) TABLE 5-14 INFLUENCE C	OF CROP N-B	ased Wa	STE APPLICA	ATION RATE	es on P A		CESS	nt ¹ Ex	ccess P
Potassium (K) TABLE 5-14 INFLUENCE C OF CROP NE	Application	ased Wa	STE APPLICA Waste N	ATION RATE	F.O a train	PPLIED IN EX Crop Req N	(CESS uiremen	nt ¹ Ex	ccess P pplied lb/a
Potassium (K) TABLE 5-14 INFLUENCE C OF CROP NE	Application Rate	ASED WA	STE APPLICA Waste N	ATION RATE	P	PPLIED IN EX Crop Req N	CESS uiremen P	nt ¹ Es A	ccess P pplied


P Application Over Time

- 100 lbs/Ac P2O5 maintained level above 25 ppm (50 lbs/Ac)
- Zero applied P steady decline of P (25 to 15 ppm)
- 150 lbs/Ac every three years up and down
- 150 lbs/Ac at planting steady decline over six years
- 50 lbs/Ac every three years slow decline


P Placement at Planting

- Banding P2O5 at planting increases concentration close to the row – 75 and 45 lbs/Ac
- Broadcast Same rates spreads P across the soil

Phosphorus Applications

- P fertilizer may be broadcast on the soil surface (liquid or dry) or it can be placed in a concentrated band
- There may be advantages to banding, including
 - Early crop growth enhancement
 - Concentration of P to minimize soil contact and reaction
 - Placement in the root zone

https://www.ipni.net/ipniweb/portal.nsf/0/02d5d56d777313b2062577ce0069a3a8/\$file/p%20fert%20tech%2011 %2010%202010.pdf

Lesson Summary

- Phosphorus is essential for energy transfer in plant processes
- It is in finite supply, not widely distributed around the world
- Phosphate rock is not water soluble and has many impurities
- Phosphorus does not move well in the soil
- Phosphorus runoff misuses a finite resource and contributes towards harmful algal blooms