AGR 1540 – Introduction to Geographic Information Systems Lecture 1

Learning objectives:

- By the end of the lesson you will be able to:
 - Discuss historical aspects of geographic information systems (GIS)
 - Identify applications of GIS in real life work days
 - Explain components of GIS: Hardware, Software, etc.

Text and E Resources

• GIS Fundamentals – Bolstad

<u>https://vector.geospatial.science</u> <u>/</u>

LEARN GIS

ch Textbo	ook Troubleshoot	File Icons	Toolbars	АгсМар	Cartography	ArcCatalog	Windows Ops.		
TEXTB	рок	II: NAVIGATING OUR WORLD		III - SPATIAL DATA		IV - DATA ORGANIZATION AND MEET YOUR GIS			
Glossa	Glossary		2.1: Introduction 2.2: Geodesy			3.1: Introduction 3.2: Vector Data		4.1: Introduction	
Append	lix A - Common File Types	2.3: Mathematically Measuring the			3.3: Raster Data		4.2: Data Models		
and Ico	and Icons in ArcGIS I: HISTORY AND SCOPE OF GIS		Earth			3.4: Discrete and Continuous Data 3.6: Introduction to Attribute Tables		4.3: Meet ArcCatalog 4.3B: Meet ArcCatalog Video	
I: HISTO			2.4: Latitude and Longitude						
1.1: Intr	oduction	2.5: Geodetic Datums			3.5: Data Tables		4.4: Meet ArcMap		
1.2: Wh	1.2: What is GIS?		2.6: Geographic Coordinate Systems					4.4-B: Meet ArcMap Video Tour	
1.3: Wh	y Do We Need A GIS?	2.7: Proj	ection Methods				4.5: What	Are Relational Databases	
1.4: Put	tting it all Together: An	2.8: Projected Coordinate Systems					4.6: ArcGIS File Naming Rules		
Example	6	2.9: Just a Few Extras		4.7: The ArcGIS Help Menu					
1.5: Use	1.5: Uses of GIS								
1.6: His	tory of GIS								
V: ATTR	NBUTE TABLES AND	VI: DIGI EDITING	TIZING, CREATIN 9 DATA	IG, AND	VII: GEOPRO		VIII: DATA	QUALITY	
5.1: Introduction		6.1: Introduction		7.1. Introduction		0.1. 1111 04461011			
5.2: Ov	erview	6.2: Scanning and Digitizing Data							
5.3: Atti Menus	ribute Tables - Intro to the	6.3: Oth	er Sources of Pri	mary Data					
5.4: Sel	5.4: Selecting Data in ArcMap 5.5: Using Selected Data		6.4: Editing Existing Data						
5.5: Usi									
5.7: Sel	ect by Attribute Part Two								
5.6: Sel	5.6: Select by Attribute Part One								
E 0: Col	oot by Location								

Geographic Information Systems GIS

- Have greatly evolved in the last 50 years
 - Computer and satellite evolution have aided GIS
- Position and signal
 - Noise, distortion
- With increased population, rapidly generating positional information, systems need to manage data

GIS History Cholera

- 1854 Cholera Soho district of London
- Plumbing was poor and people used public water pumps
- Dr. John Snow mapped cases and identified a public pump associate with high [cases]
- Pump location (spatial) and number of cases (non-spatial data)

https://www.wired.com/2009/09/0908london-cholera-pump/

GIS History

- 1855-59 British ordinance survey
 - Glass slides of map layers
- 1943-47 Programmable computers: Vacuum tube
 - Computational statistical analysis
- 1955 Transistor smaller, faster, more reliable than vacuum tube
 - Better analysis and paper printing of maps

- 1959 Harvard Lab for Computer Graphics and Spatial Analysis
 - Urban planning, GIS etc.
- 1959 Waldo Tobler Map in Map out
 - Early data capture and manipulation
- 1963-95 Canada Geographic Information System – guide and understand rural resources

GIS History

- 1969 Ian McHarg thin paper layers with polygons to lessen impact of design on land
- 1969 ESRI Environmental Systems Research Institute founded
- 1972 Landsat Launched
- 1982 ESRI ARC/INFO, ArcView, ArcGIS released

- 1990 US Census Bureau release Topologically Integrated Geographic Encoding and Referencing (TIGER) database
- 1996 Mapquest goes online
- 2000 Selective Availability ends
 - Intentional degradation of public GPS signals implemented for national security reasons

Major Goal of the Course

- Apply GIS as part of a model to solve a multi-layered problem or question
- Align your signal (data) with a geospatial point on the earth and understand the relationship of the response, treatment, environment etc.

<u>https://www.real-statistics.com/design-of-</u> <u>experiments/completely-randomized-design/randomized-</u> <u>complete-block-design/</u> Randomized Complete Block Design

Farm 1	Farm 2	Farm 3	Farm 4
A	С	B	С
С	В	A	A
В	A	С	B

GIS Data and Daily Applications

- Voter information and districts
- Mapping health emergencies
- Mapping natural disasters
- Insurance reporting
- Property and tax records
- Water ways and drainage patterns

GIS – Where our Signal Occurs

- Cartography Map making
- Remote Sensing data collection while not in the landscape
- GPS Satellite based detection and positioning
- Web map applications real time information
- Database design and management

https://gisgeography.com/what-gis-geographic-informationsystems/

Components of a GIS System

- 1. Data Stored in layers
- 2. Hardware Field data collection devices
- Software storage and computation – rapid and repeatable

https://gisgeography.com/what-gis-geographic-informationsystems/

Data – Two Main Types

- Raster grid appearance
- Stored in rows and columns
- Discrete or continuous
- Ex. Land cover, temperature, imagery

https://gisgeography.com/what-gisgeographic-information-systems/

- Vector points, lines, polygons with vertices
- Ex. fire hydrants, contours, boundaries

TY - THES

AU - Saab, David PY - 2003/05/01

SP T1 - Conceptualizing Space: Mapping Schemas as Meaningful Representations
DO - 10.13140/2.1.3030.1767
ER -

Spatial and Non-Spatial Data

- Spatial Data information relative to the location
 - Addresses, road intersections, building locations, location in a field of variation
- Non-spatial data information attributed to the location
 - Income at an address, number of accidents at an intersection, yield difference in a location of variation in a field, elevation

Fig. 4. Spatial distribution of the water content (TDR) and bulk density in the cultivated field for spring and summer measurements.

GIS - Hardware

- Computer workstations
- Smart phone
- Satellite
- UAV NDVI image of 29 acre = 117,906 data lines x 5 measures = 589,530 data points
- Corn planter, combine 7,586 data lines x 7 measures = 53,102 data points

Software and Analytics

- ArcGIS
- QGIS
- SMS
- Global mapper
- Google Earth
- Open Source R, Python
- Alphabet soup of software

Maptitude

Lesson Summary

- Spatial and non-spatial data are important aspects of GIS
- Correlation of non-spatial and spatial data can help solve problems
- Intensive computer horsepower is needed for complex computing problems of today.
- It is easier to collect than it is to analyze GIS data
- Discussion: What problems are we trying to solve in Agriculture with a GIS?
- Assignment: list 3 examples of GIS use in Agriculture and 2 uses that are coming in the near future. Answer Exercises 1.1, 1.5, and 1.6 in chapter 1 Bolstad text