AGR 1402 Important Agriculture Concepts

Lesson Objectives

- By the end of the lesson you should be able to:
- Understand physical dimensions of an acre
- Calculate input needs based on area to treat
- Think about agronomic decisions and field areas

Useful Agronomic Numbers

- Determine seed to order
- How much manure to apply
- How much chemical to mix

1 acre	is 1 rod wide and $1 / 2$ mile long 1 rod 16.5 feet
1 mile	5280 feet, $1 / 2$ mile 2640 feet
1 acre	43,560 sq feet 1 sq foot 144 sq inches
1 acre	$6,272,640$ sq inches
1 inch rain on 1 acre	$6,272,640$ cu inches water
1 gallon water	8.3453 pounds
1 cu foot water	7.48052 gallons
1 cu foot water	62.42718356 pounds
1 cu foot	1728 cu inches
1 cu inch water	0.036126842 pounds
1 cu inch water	0.004329005 gallons
1 acre inch of water	$27,154.2876$ gallons
1 acre inch of water	$226,610.6763$ pounds
1 ton	2000 pounds
1 acre inch of water	113.3053382 tons
PDF/range04c.pdf	

https://www.ag.ndsu.edu/archive/dickinso/research/2004/PDF/range04c.pdf

Farmer Exercise

- Manure spreader applies 20^{\prime} wide and carries 4,000 gallon
- Soil and water allows to apply 6,000 gpa swine manure
- Field is $1 / 4$ mile $\left(1,320^{\prime}\right)$ long
- Buffer width and ends 60' spread 1,260'
- Discharge rate is 800 gallon per minute
- How fast do you drive?
- $20^{\prime} \times 1,320^{\prime}=25,200 / 43,560=.57$ Acre
- 4,000 (g/l) / 6,000 (g/a) = . 66 acre per load
- $4,000 \mathrm{~g} / 800 \mathrm{~g} / \mathrm{m}=5 \mathrm{~m}$
- $1320 \mathrm{ft} / 5 \mathrm{~m}=264 \mathrm{ft} /$ minute
- $264(\mathrm{ft} / \mathrm{m}) / 60(\mathrm{sec} / \mathrm{m})=4.4 \mathrm{ft} / \mathrm{sec}$
- $1 \mathrm{mph}=1.5 \mathrm{ft} / \mathrm{sec}$
- $4.4(\mathrm{ft} / \mathrm{sec}) / 1.5(\mathrm{ft} / \mathrm{sec})=3 \mathrm{mph}$

What is an Acre?

- 43,560 Square Feet
- 208.7’ x 208.7’
- Acre Furrow Slice is $6.5^{\prime \prime}$ or $.55^{\prime}$
- Weighs approximately 2 million pounds
- What is the value of the acre furrow slice?

Mental Exercise

- If an acre of land sold for $\$ 10,000$ an acre, what is the value of $1 / 32$ "?
- If we accept that we farm the top $6.5^{\prime \prime}$ which is more or less our top soil, then we have 6.5 (total inches) x 32 (1/32 per inch) = 208
- $\$ 10,000 / 208=\$ 48.07$ per $1 / 32$ " of Soil
- Remember 2,000,000 / $208=9,615$ Pounds of Soil in 1/32"
- Is this important?

Let's Keep Thinking

- 2007 USDA NRS Estimated Losses in Tons per Acre
- Water Erosion 2.7
- Wind Erosion 2.1
- Total Erosion Ton per Acre 4.8
- $4.8 \times 2,000=9,600$ pounds of soil lost by erosion
- 9,600 Pounds of soil = 1/32" = \$48.07 per acre lost

Table 18. Water (Sheet \& Rill) Erosion on Cropland, by Year, with

Margins of Error			
	Year	Million Tons per Year	Tons per Acre per Year
$\mathbf{1 9 8 2}$	$1,676.50$	4	
± 13.3	± 0.0		
$\mathbf{2 0 0 7}$	959.9	2.7	
	± 14.9	± 0.0	

- Cropland includes cultivated and non-cultivated
- Estimated margins of error $<.05$ are shown as 0.0.

Table 19. Wind Erosion on Cropland, by Year, with Margins of Error

Year	Million Tons per Year	Tons per Acre per Year	
$\mathbf{1 9 8 2}$	$1,384.50$ ± 28.9	$\pm .3$ ± 0.1	
$\mathbf{2 0 0 7}$	765.1	2.1	
	± 37.8	± 0.1	
Notes:			

- Cropland includes cultivated and non-cultivated
- Estimated margins of error $<.05$ are shown as 0.0

Acre Inch of Water

- Does water cause soil compaction?
- 1 Gallon of water across an acre is 27,154 Gallons
- 1 Gallon of water weighs 8.34 pounds
- $27,154 \times 8.34=113$ tons of water

[^0]
Corn Yield and Water Use

- As Yields Increase, so does demand for water
- How does this information influence hybrid selection and planting date?

[^1]
Lesson Summary

- An acre is 43,560 square feet
- Acre furrow slice of $6.5^{\prime \prime}$ weighs about 2 million pounds
- Acre inch of water is 27,000 gallons

[^0]: Figure 1. Evapotranspiration and plant transpiration values from planting through crop maturity for a 110-day corn hybrid growing in central lowa. Data are average values across 35 simulations that includes different weather years using the well-calibrated APSIM model for this environment. The average simulated yield across 35 -years was 200 bushels per acre.

[^1]: Figure 3. Relationship between corn yields and evapotranspiration.

